
…demystified

Mikael Capelle — mikael.capelle@irt-saintexupery.com
2020–2021

mikael.capelle@irt-saintexupery.com

Git introduction

Goal of this presentation:

• no more magic command —
understand each git command
you use;

• never delete a local git repository
if you screwed — hidden secrets of
git storage;

• discover new commands and good
practice when using git as a
version-control system.

1

Git introduction

Goal of this presentation:
• no more magic command —
understand each git command
you use;

• never delete a local git repository
if you screwed — hidden secrets of
git storage;

• discover new commands and good
practice when using git as a
version-control system.

1

Git introduction

Goal of this presentation:
• no more magic command —
understand each git command
you use;

• never delete a local git repository
if you screwed — hidden secrets of
git storage;

• discover new commands and good
practice when using git as a
version-control system.

1

Git introduction

Goal of this presentation:
• no more magic command —
understand each git command
you use;

• never delete a local git repository
if you screwed — hidden secrets of
git storage;

• discover new commands and good
practice when using git as a
version-control system.

1

Git introduction

Goal of this presentation:
• no more magic command —
understand each git command
you use;

• never delete a local git repository
if you screwed — hidden secrets of
git storage;

• discover new commands and good
practice when using git as a
version-control system.

1

Git history

git = version-control system

• First commit (!) in April 2005 by Linus Torvalds.
• Maintained since July 2005 mainly by Junio Hamano (Google).
• Stable release: 2.19.1 (version < 2.13 no longer supported).

• Git repository of git itself:
• https://git.kernel.org/pub/scm/git/git.git/
• https://github.com/git/git (publish only)

• Documentation and useful resources:
https://git-scm.com/

2

https://git.kernel.org/pub/scm/git/git.git/
https://github.com/git/git
https://git-scm.com/

Git in one picture

git is graph-based —

5fc67bae 61fc8496 d2e99c42 29a6cbde fa8b1b10 21b70784 11239bea 6fdece84 b7ed7837 f8566319

f8566319 e51c188a 74df16b5 06374286

3038df98 11991bbd 26e3c372

18424f62 3a27c1d9 e2547bf9

30dd3323 684c090f a23902d8 970c6c6c

da0515cd 271d81c8 9b603cf0

v1.0.0 v1.0.1 masterv1.0.1add-feature-1

add-feature-2

fix-issue-4

fix-issue-2

add-feature-3

backup-5

HEAD

3

Git architecture

git manages 3 different zones
locally:
• the working directory;
• the staging area (or index);
• the repository.

working directory

staging area

repository

git add

git commit

4

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

stash
Temporary zone to backup files when
performing other git operations.

working directory Your actual working directory. This is
what other softwares see.

index
Work to add to your next commit (snapshot). Also
called the staging area.

local repository Local version of remote repository. Contains all
the (synchronized) history of your project.

remote repository
Remote location of your repository
(e.g., Github). Also called upstream.

5

Git architecture — In reality…

working directorystash index local repository remote repository

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

commit

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

commit

reset

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

commit

reset

push

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

commit

reset

push

pull

fetch

6

Git architecture — In reality…

working directorystash index local repository remote repository

stash

stash apply | pop

add | rm | mv

checkout

commit

reset

push

pull

fetch

checkout

reset –hard

6

Where’s my HEAD?

HEAD is a symbolic reference to (usually) the current branch —

• HEAD is stored in .git/HEAD;
• HEAD can be detached and points directly to a commit;
• HEAD is (indirectly) used to determine the parent(s) of new
commits;

• by default, HEAD points to the refs/heads/master reference;
• there are many “HEAD”s: HEAD, FETCH_HEAD, ORIG_HEAD, …

7

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs
git config core.autocrlf true

References: https://git-scm.com/docs/
Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs

git config core.autocrlf true

References: https://git-scm.com/docs/
Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs
git config core.autocrlf true

References: https://git-scm.com/docs/
Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs
git config core.autocrlf true

References: https://git-scm.com/docs/

Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs
git config core.autocrlf true

References: https://git-scm.com/docs/
Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git config [--system|--global|--
local] <name> <value> — Update git configuration in the
repository (default behaviour), globally for the current user or
system-wide.

git config --global core.editor emacs
git config core.autocrlf true

References: https://git-scm.com/docs/
Cheatsheet:
http://ndpsoftware.com/git-cheatsheet.html

Windows users? Use Git Bash, included when downloading the
official git at https://git-scm.com/download/win.

8

https://git-scm.com/docs/
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/download/win

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.

git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.
git remote -v — List remotes associated with the local
repository.
git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.
git remote remove <remote> — Remove the specified
remote from the local repository.
git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.
git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.

git remote -v — List remotes associated with the local
repository.
git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.
git remote remove <remote> — Remove the specified
remote from the local repository.
git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.
git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.
git remote -v — List remotes associated with the local
repository.

git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.
git remote remove <remote> — Remove the specified
remote from the local repository.
git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.
git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.
git remote -v — List remotes associated with the local
repository.
git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.

git remote remove <remote> — Remove the specified
remote from the local repository.
git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.
git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.
git remote -v — List remotes associated with the local
repository.
git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.
git remote remove <remote> — Remove the specified
remote from the local repository.

git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git init [--bare] — Initialize an empty local repository not
associated with any upstream.
git clone <url> — Initialize a local repository from the
given remote repository at <url>. The default name of the
remote within the local repository is origin and the default
branch master.
git remote -v — List remotes associated with the local
repository.
git remote add <remote> <url> — Add a remote to the
local repository with the name <remote> and pointing to the
given <url>.
git remote remove <remote> — Remove the specified
remote from the local repository.
git remote set-url <remote> <url> — Point the
specified remote to the specified URL.

9

Git commands — An introduction

git status [-s] — Display the state of the local repository.
-s gives you a shorter version.

git diff [--cached] <commit> — Display the difference
between the working directory (or the index with the --cached
option) and the specified commit (or the index if no commit is
specified).
git log [--oneline] — Display the history of commits of
the current branch. The option --oneline gives a shorter
output.
git log --oneline --left-
right <branch1> <branch2>

10

Git commands — An introduction

git status [-s] — Display the state of the local repository.
-s gives you a shorter version.
git diff [--cached] <commit> — Display the difference
between the working directory (or the index with the --cached
option) and the specified commit (or the index if no commit is
specified).

git log [--oneline] — Display the history of commits of
the current branch. The option --oneline gives a shorter
output.
git log --oneline --left-
right <branch1> <branch2>

10

Git commands — An introduction

git status [-s] — Display the state of the local repository.
-s gives you a shorter version.
git diff [--cached] <commit> — Display the difference
between the working directory (or the index with the --cached
option) and the specified commit (or the index if no commit is
specified).
git log [--oneline] — Display the history of commits of
the current branch. The option --oneline gives a shorter
output.

git log --oneline --left-
right <branch1> <branch2>

10

Git commands — An introduction

git status [-s] — Display the state of the local repository.
-s gives you a shorter version.
git diff [--cached] <commit> — Display the difference
between the working directory (or the index with the --cached
option) and the specified commit (or the index if no commit is
specified).
git log [--oneline] — Display the history of commits of
the current branch. The option --oneline gives a shorter
output.
git log --oneline --left-
right <branch1> <branch2>

10

Git commands — An introduction

git pull — Pull the upstream associated with the current
branch, upading the local repository, the index and the working
directory. Might fail if there are conflicts between the local state
and the remote one.

git push — Push the current branch to its associated remote
(git 2+), or all the branches with associated remotes and
matching branch (git 1).
git push <remote> <local-branch>:<remote-
branch> — Update the remote branch of the given <remote>
to match the specified local branch.
git fetch — Update the local repository but not the index nor
the working directory.

11

Git commands — An introduction

git pull — Pull the upstream associated with the current
branch, upading the local repository, the index and the working
directory. Might fail if there are conflicts between the local state
and the remote one.
git push — Push the current branch to its associated remote
(git 2+), or all the branches with associated remotes and
matching branch (git 1).

git push <remote> <local-branch>:<remote-
branch> — Update the remote branch of the given <remote>
to match the specified local branch.
git fetch — Update the local repository but not the index nor
the working directory.

11

Git commands — An introduction

git pull — Pull the upstream associated with the current
branch, upading the local repository, the index and the working
directory. Might fail if there are conflicts between the local state
and the remote one.
git push — Push the current branch to its associated remote
(git 2+), or all the branches with associated remotes and
matching branch (git 1).
git push <remote> <local-branch>:<remote-
branch> — Update the remote branch of the given <remote>
to match the specified local branch.

git fetch — Update the local repository but not the index nor
the working directory.

11

Git commands — An introduction

git pull — Pull the upstream associated with the current
branch, upading the local repository, the index and the working
directory. Might fail if there are conflicts between the local state
and the remote one.
git push — Push the current branch to its associated remote
(git 2+), or all the branches with associated remotes and
matching branch (git 1).
git push <remote> <local-branch>:<remote-
branch> — Update the remote branch of the given <remote>
to match the specified local branch.
git fetch — Update the local repository but not the index nor
the working directory.

11

Git commands — An introduction

git add [-u] <files...> — Add the given file to the index,
i.e., stage the file. The option -u update all files already in the
index to match the working repository (but not newly created
files).

git rm [--cached] <files...> — Remove a file from
both the index and the working directory. The option --cached
allow to remove a file only from the index.
git mv <files...> <file> — Rename file or move files to
directory in both the working directory and the index (similar to
the mv command).
git checkout <files...> — Update files in the working
directory to match their counterparts in the index.

12

Git commands — An introduction

git add [-u] <files...> — Add the given file to the index,
i.e., stage the file. The option -u update all files already in the
index to match the working repository (but not newly created
files).
git rm [--cached] <files...> — Remove a file from
both the index and the working directory. The option --cached
allow to remove a file only from the index.

git mv <files...> <file> — Rename file or move files to
directory in both the working directory and the index (similar to
the mv command).
git checkout <files...> — Update files in the working
directory to match their counterparts in the index.

12

Git commands — An introduction

git add [-u] <files...> — Add the given file to the index,
i.e., stage the file. The option -u update all files already in the
index to match the working repository (but not newly created
files).
git rm [--cached] <files...> — Remove a file from
both the index and the working directory. The option --cached
allow to remove a file only from the index.
git mv <files...> <file> — Rename file or move files to
directory in both the working directory and the index (similar to
the mv command).

git checkout <files...> — Update files in the working
directory to match their counterparts in the index.

12

Git commands — An introduction

git add [-u] <files...> — Add the given file to the index,
i.e., stage the file. The option -u update all files already in the
index to match the working repository (but not newly created
files).
git rm [--cached] <files...> — Remove a file from
both the index and the working directory. The option --cached
allow to remove a file only from the index.
git mv <files...> <file> — Rename file or move files to
directory in both the working directory and the index (similar to
the mv command).
git checkout <files...> — Update files in the working
directory to match their counterparts in the index.

12

Git commands — An introduction

git commit [-m <msg>] — Create a new commit (snapshot)
using the index with the specified message. If no message is
specified, the default git editor is opened.

git commit --amend — Update the last commit with changes
from the index.
git reset [<files...>] — Update the specified files (or all
files) in the index to match their counterparts in the current
local repository.
git reset --mixed <commit> — Update the index to
match the specified commit.

13

Git commands — An introduction

git commit [-m <msg>] — Create a new commit (snapshot)
using the index with the specified message. If no message is
specified, the default git editor is opened.
git commit --amend — Update the last commit with changes
from the index.

git reset [<files...>] — Update the specified files (or all
files) in the index to match their counterparts in the current
local repository.
git reset --mixed <commit> — Update the index to
match the specified commit.

13

Git commands — An introduction

git commit [-m <msg>] — Create a new commit (snapshot)
using the index with the specified message. If no message is
specified, the default git editor is opened.
git commit --amend — Update the last commit with changes
from the index.
git reset [<files...>] — Update the specified files (or all
files) in the index to match their counterparts in the current
local repository.

git reset --mixed <commit> — Update the index to
match the specified commit.

13

Git commands — An introduction

git commit [-m <msg>] — Create a new commit (snapshot)
using the index with the specified message. If no message is
specified, the default git editor is opened.
git commit --amend — Update the last commit with changes
from the index.
git reset [<files...>] — Update the specified files (or all
files) in the index to match their counterparts in the current
local repository.
git reset --mixed <commit> — Update the index to
match the specified commit.

13

Git commands — An introduction

git checkout <branch> — Switch to the specified branch,
updating the index and the working tree.

git checkout <commit> — Switch to the specified commit,
updating both the index and the working tree and entering a
detached HEAD state.
git reset --hard [<commit>] — Reset the index and
working tree to match the specified commit (default to the
current HEAD). Discard all changes not already commited!

14

Git commands — An introduction

git checkout <branch> — Switch to the specified branch,
updating the index and the working tree.
git checkout <commit> — Switch to the specified commit,
updating both the index and the working tree and entering a
detached HEAD state.

git reset --hard [<commit>] — Reset the index and
working tree to match the specified commit (default to the
current HEAD). Discard all changes not already commited!

14

Git commands — An introduction

git checkout <branch> — Switch to the specified branch,
updating the index and the working tree.
git checkout <commit> — Switch to the specified commit,
updating both the index and the working tree and entering a
detached HEAD state.
git reset --hard [<commit>] — Reset the index and
working tree to match the specified commit (default to the
current HEAD). Discard all changes not already commited!

14

Git commands — An introduction

merge — Merging introduces the changes from a different branch into
the current one, and create a new commit representing the “merge”.

git merge [--no-commit] [-m <msg>] <branch> —
Merge the change from the given <branch> into the current
branch. The --no-commit performs the merge but does not
commit the result. The -m option can be used to override the
default commit message.

git merge --abort — Abort the current merge process.
git merge --continue — Continue the current merge
process after resolving conflicts.

15

Git commands — An introduction

merge — Merging introduces the changes from a different branch into
the current one, and create a new commit representing the “merge”.

git merge [--no-commit] [-m <msg>] <branch> —
Merge the change from the given <branch> into the current
branch. The --no-commit performs the merge but does not
commit the result. The -m option can be used to override the
default commit message.
git merge --abort — Abort the current merge process.

git merge --continue — Continue the current merge
process after resolving conflicts.

15

Git commands — An introduction

merge — Merging introduces the changes from a different branch into
the current one, and create a new commit representing the “merge”.

git merge [--no-commit] [-m <msg>] <branch> —
Merge the change from the given <branch> into the current
branch. The --no-commit performs the merge but does not
commit the result. The -m option can be used to override the
default commit message.
git merge --abort — Abort the current merge process.
git merge --continue — Continue the current merge
process after resolving conflicts.

15

Git commands — An introduction

rebase — Rebasing modifies the history in order to insert commits
from a different branches before the commits of the current branch.

git rebase <branch> — Rebase the given branch into the
current branch.

git rebase --abort — Abort the current rebase process.
git rebase --continue — Continue the current rebase
process after resolving conflicts.

16

Git commands — An introduction

rebase — Rebasing modifies the history in order to insert commits
from a different branches before the commits of the current branch.

git rebase <branch> — Rebase the given branch into the
current branch.
git rebase --abort — Abort the current rebase process.

git rebase --continue — Continue the current rebase
process after resolving conflicts.

16

Git commands — An introduction

rebase — Rebasing modifies the history in order to insert commits
from a different branches before the commits of the current branch.

git rebase <branch> — Rebase the given branch into the
current branch.
git rebase --abort — Abort the current rebase process.
git rebase --continue — Continue the current rebase
process after resolving conflicts.

16

Git commands — An introduction

cherry-pick — Cherry-picking applies the change from one or more
commits to the current branch, creating new commits.

git cherry-pick <commits...> — Cherry-pick the given
commit(s) on top of the current branch.

git cherry-pick --abort — Abort the current cherry-pick
process.
git cherry-pick --continue — Continue the current
cherry-pick process after resolving conflicts.

17

Git commands — An introduction

cherry-pick — Cherry-picking applies the change from one or more
commits to the current branch, creating new commits.

git cherry-pick <commits...> — Cherry-pick the given
commit(s) on top of the current branch.
git cherry-pick --abort — Abort the current cherry-pick
process.

git cherry-pick --continue — Continue the current
cherry-pick process after resolving conflicts.

17

Git commands — An introduction

cherry-pick — Cherry-picking applies the change from one or more
commits to the current branch, creating new commits.

git cherry-pick <commits...> — Cherry-pick the given
commit(s) on top of the current branch.
git cherry-pick --abort — Abort the current cherry-pick
process.
git cherry-pick --continue — Continue the current
cherry-pick process after resolving conflicts.

17

Git commands — An introduction

stash — Saves and restores local changes by storing them in the
stash stack.

git stash — Record local changes by creating a new stash on
top of all previous ones.

git stash apply — Apply the changes from the stash on top
of the stack to your current working directory.
git stash drop — Drop the stash on top of the stack.
git stash pop — Equivalent to apply then drop.

18

Git commands — An introduction

stash — Saves and restores local changes by storing them in the
stash stack.

git stash — Record local changes by creating a new stash on
top of all previous ones.
git stash apply — Apply the changes from the stash on top
of the stack to your current working directory.

git stash drop — Drop the stash on top of the stack.
git stash pop — Equivalent to apply then drop.

18

Git commands — An introduction

stash — Saves and restores local changes by storing them in the
stash stack.

git stash — Record local changes by creating a new stash on
top of all previous ones.
git stash apply — Apply the changes from the stash on top
of the stack to your current working directory.
git stash drop — Drop the stash on top of the stack.

git stash pop — Equivalent to apply then drop.

18

Git commands — An introduction

stash — Saves and restores local changes by storing them in the
stash stack.

git stash — Record local changes by creating a new stash on
top of all previous ones.
git stash apply — Apply the changes from the stash on top
of the stack to your current working directory.
git stash drop — Drop the stash on top of the stack.
git stash pop — Equivalent to apply then drop.

18

Resolving conflicts

Conflicts occurs when a file has two versions that must be merged,
e.g., after a merge, a rebase, a cherry-pick or a stash.

<<<<<<< HEAD
Version 2
=======
Version 3
>>>>>>> Other branch

19

Resolving conflicts

1. Abort the current process, e.g., with the --abort option that
most commands have.

2. Retrieve one version of the file:
git checkout --theirs|--ours <files...>

The --theirs and --ours do not have the same meaning for
merge or rebase.

3. Modify the file manually to resolve the conflict. → Do it! Do it!
Do it!

4. Use a dedicated tool, e.g., git mergetool, Magit.

20

Resolving conflicts

1. Abort the current process, e.g., with the --abort option that
most commands have.

2. Retrieve one version of the file:
git checkout --theirs|--ours <files...>

The --theirs and --ours do not have the same meaning for
merge or rebase.

3. Modify the file manually to resolve the conflict. → Do it! Do it!
Do it!

4. Use a dedicated tool, e.g., git mergetool, Magit.

20

Resolving conflicts

1. Abort the current process, e.g., with the --abort option that
most commands have.

2. Retrieve one version of the file:
git checkout --theirs|--ours <files...>

The --theirs and --ours do not have the same meaning for
merge or rebase.

3. Modify the file manually to resolve the conflict. → Do it! Do it!
Do it!

4. Use a dedicated tool, e.g., git mergetool, Magit.

20

Resolving conflicts

1. Abort the current process, e.g., with the --abort option that
most commands have.

2. Retrieve one version of the file:
git checkout --theirs|--ours <files...>

The --theirs and --ours do not have the same meaning for
merge or rebase.

3. Modify the file manually to resolve the conflict. → Do it! Do it!
Do it!

4. Use a dedicated tool, e.g., git mergetool, Magit.

20

Resolving conflicts

1. Abort the current process, e.g., with the --abort option that
most commands have.

2. Retrieve one version of the file:
git checkout --theirs|--ours <files...>

The --theirs and --ours do not have the same meaning for
merge or rebase.

3. Modify the file manually to resolve the conflict. → Do it! Do it!
Do it!

4. Use a dedicated tool, e.g., git mergetool, Magit.

20

Git objects

git stores objects within the .git/objects directory (local):

• blob objects;
• tree objects;
• commit objects;
• (annotated) tag objects.

Each object represented by its SHA-1 checksum (20 bytes, 40
hexadecimal characters), e.g:

.git/objects/98/7c3be764396c5a315e2c5ea536d8956aba82bc

Once created, objects never change.

21

Git objects — blob

blob objects —

• a blob contains the content of a “file” (a binary array of data);
• identical contents means identical objects due to SHA-1 naming:

• two identical files are represented by a single blob object;

• a blob has no metadata associated directly with it:
• names of files are stored within tree objects and within the index;

• blob objects are usually created when (revision of) files are
added to the repository (git add) or files are compared (git
diff).

git does not store delta between file revisions.

22

Git objects — tree

tree objects —

• a tree is similar to a directory, it contains:
• references to blob objects (files);
• references to other tree objects (sub-directories);

• a tree associates names and modes to blob and tree objects it
references;

• a tree object has no “name” by itself.

23

Git objects — tree

tree objects — possible modes:

• 040000: directory
• 100644: regular non-executable file
• 100755: regular executable file
• 120000: symbolic link
• 160000: gitlink (submodule)

tree

blob

commit

24

Git objects — commit

commit objects —

• commit objects are the building blocks of git;
• a commit object contains a snapshot of the working tree (a tree
object) with associated metadata: author, committer, date, …;

• commit objects are linked together by a parent-child
relationship, creating a revision tree;

• references (branches, HEAD, tags) target commit objects using
their SHA-1 checksums (names).

25

Git objects — Relation between objects

commit

<tree-id>
<parent-id>
<parent-id>
<author> <date>
<committer> <date>
<message>

0..*

<parent-id>

0..2

tree

<mode> <name> <blob-id>
<mode> <name> <tree-id>
<mode> <name> <blob-id>
<...>

0..*

<commit-id>

0..*

0..*

<tree-id>

1 0..*

<tree-id>

0..*

blob

<file-content>

0..*
<blob-id>

0..*

tag (annotated)

<object-id>
<object-type>
<tag-name>
<tagger> <date>
<message>

0..*

1 <object-id>

1

1

26

Git objects — Inspecting objects

List files in the index.
$ git ls-files --stage
100644 fa49b077972391ad58037050f2a75f74e3671e92 0 foo.txt
100644 96ac8f82e27c18f4a736ebb277fb0aa9648b711f 0 test.txt

Display the content of the given blob.
$ git cat-file -p 96ac8f82e27c18f4a736ebb277fb0aa9648b711f
version 4

$ git cat-file -p HEAD
tree 0f318b9fb1845be79439afc88c7b76dfa2ff8d91
parent eacd8426cd48c7e14f80b1650110439dbb13a7df
author Mikaël Capelle <mikael.capelle@irt-saintexupery.com> 1541587661 +0100
committer Mikaël Capelle <mikael.capelle@irt-saintexupery.com> 1541587661 +0100

third commit

$ git cat-file -p HEAD^{tree}
100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt
100644 blob 7170a5278f42ea12d4b6de8ed1305af8c393e756 test.txt

27

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version "
test.txt

"new file""some file"
bar.txt

git init .git

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 1"
test.txt

"new file""some file"
bar.txt

echo "version 1" > test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 1"
test.txt

"new file""some file"
bar.txt

git add test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 1"
test.txt

"new file""some file"
bar.txt

git commit -m "first commit"git

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file""some file"
bar.txt

echo "version 2" > test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file""some file"
bar.txt

echo "some file" > bar.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file"
new.txt

"some file"
bar.txt

echo "new file" > new.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file"
new.txt

"some file"
bar.txt

git add test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file"
new.txt

"some file"
bar.txt

git add new.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 2"
test.txt

"new file"
new.txt

"some file"
bar.txt

git commit -m "second commit"git

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 3"
test.txt

"new file"
new.txt

"some file"
bar.txt

echo "version 3" > test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 3"
test.txt

"new file"
new.txt

"some file"
bar.txt

git commit -am "third commit"git

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 4"
test.txt

"new file"
new.txt

"some file"
bar.txt

echo "version 4" > test.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 4"
test.txt

"new file"
new.txt

"some file"
bar.txt

git add -ugit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 4"
test.txt

"new file"
foo.txt

"some file"
bar.txt

mv new.txt foo.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 4"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git rm new.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 4"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git add foo.txtgit

28

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8f

HEAD

HEAD

HEAD

index

test.txt

test.txt

new.txt

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

echo "version 5" > test.txtgit

28

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: new.txt -> foo.txt
modified: test.txt

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: test.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

bar.txt

29

Branch & References

reference = human-readable name for a SHA-1 hash —

• references are stored under .git/refs;
• there a three main types of references:

• heads — head of local branches;
• remotes — head of remote branches;
• tags.

30

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git tag v1.0.0git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git checkout -b branch-1git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

echo "version 6" > test.txt && git commit -am "commit on branch-
1"git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git checkout mastergit

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

git checkout -b branch-2git

31

References

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txtrefs/heads/master

refs/tags/v1.0.0

commit on branch-1
eaa1d1

commit on branch-2
fab430

refs/heads/branch-1

refs/heads/branch-2

HEADHEAD

HEAD

HEAD

tree
e46540

"version 6"
b1dc10

test.txt

new.txt

tree
2fb3f8

"version 7"
b4370c

test.txt

new.txt

echo "version 7" > test.txt && git commit -am "commit on branch-
2"git

31

$ git show-ref --head
eaa1d1794759413c31d26fe0b66c6a9d73142d7f HEAD
eaa1d1794759413c31d26fe0b66c6a9d73142d7f refs/heads/branch-1
fab4302c8ab48a509b3f55bb22c8ad790cffcdde refs/heads/branch-2
ed64911b6d93a10de9beb6c6ea03c58afbf75e03 refs/heads/master
eaa1d1794759413c31d26fe0b66c6a9d73142d7f refs/remotes/origin/branch-1
ed64911b6d93a10de9beb6c6ea03c58afbf75e03 refs/remotes/origin/master
fab4302c8ab48a509b3f55bb22c8ad790cffcdde refs/remotes/public/branch-2
eaa1d1794759413c31d26fe0b66c6a9d73142d7f refs/remotes/public/master
ed64911b6d93a10de9beb6c6ea03c58afbf75e03 refs/tags/v1.0.0

32

Remotes

remote = “hosted” version of the repository —

• a remote is simply a git repository somewhere else:
• a remote is often a bare repository (see --bare for the init and
clone commands), i.e., a repository without a working directory;

• git handles four protocols to communicate with remotes:
• local protocol — file:// — for remotes that are on an accessible
filesystem;

• http(s) protocol — http(s):// — authenticated and
unauthenticated access;;

• ssh protocol — ssh:// — easy to set-up, but does not allow
unauthenticated access;

• git protocol — git://.

33

Remotes

remote = “hosted” version of the repository —

• a remote is identified by its name:
• the default remote after clone is origin;

• remotes are often configured to prevent hazardous behaviours:

$ git config --system receive.fsckObjects true
$ git config --system receive.denyNonFastForwards true
$ git config --system receive.denyDeletes true

• in order to enable branch-specific control, hooks must be used.

34

Remotes

remote = “hosted” version of the repository —

$ git init --bare
Initialized empty Git repository in /data/git/mikael/tutogit.git
$ git status
fatal: This operation must be run in a work tree
$ ls
config description HEAD hooks info objects refs

35

git commands

• Most commands are non-destructive:
• most objects can be retrieved from the repository, even though it
may be hard to find their names;

• objects may have been added to the repository without a git
add;

• only a few commands erase files in the working directory.

• Some commands have very different behaviors when a path is
specified at the end, e.g., reset or checkout.

• Some commands have a -p|--patch option to apply the
command hunk by hunk, e.g., you can add a file partially to the
index using git add -p.

• Most “hazardous”/destructive commands have a
-n|--dry-run flag to perform a dry run of the command, i.e.,
printing what the command would do without actually doing
anything.

36

git reset — V1

git reset [-q] [<tree-ish>] [--] [<paths> …]

• reset the index entry for <paths> so that it points to the
objects for <paths> in the <tree-ish> revision;

• does not update any files in the working directory;
• if a file did not exists in the <tree-ish> revision, remove the
file from the index.

37

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

38

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset HEAD -- test.txtgit

38

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset 3e397a -- test.txtgit

38

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset 3e397a -- foo.txtgit

38

git reset — V2

git reset [--soft | --mixed [-N] | --hard | --merge
| --keep] [-q] [<commit>]

• reset the current branch head to the specified <commit>, reset
the index and reset files in the working tree:

• --soft — reset the head but does not reset the index or files in
the working tree;

• --mixed (default) — reset the head and the index but does not
reset files in the working tree;

• --hard — reset the head, the index and all tracked files in the
working tree (i.e., discard local changes for tracked files);

• --merge, --keep — reset the head, the index, and some files in
the working tree, depending on their states.

39

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

40

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset --soft 3e397agit

40

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

foo.txt

Working directory

"version 5"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset [--mixed] 3e397agit

40

Git — Example

third commit
ed6491

second commit
eacd84

first commit
3e397a

tree
0f318b

tree
0155eb

tree
d8329f

"version 3"
7170a5

"version 2"
1f7a7a

"new file"
fa49b0

"version 1"
83baae

test.txt

test.txt

new.txt

new.txt

test.txt

"version 4"
96ac8frefs/heads/master HEAD

index

test.txt

test.txt

foo.txt

Working directory

"version 1"
test.txt

"new file"
foo.txt

"some file"
bar.txt

git reset --hard 3e397agit

40

reset vs. checkout

HEAD1 Index Workdir “Safe”?2

Commit Level
reset --soft [commit] REF
reset [commit] REF
reset --hard [commit] REF
checkout [commit] HEAD

File Level
reset [commit] <paths> —
checkout [commit] <paths> —

1Indicates if the command moves the reference (branch), REF, or only the HEAD.
2Indicates if the command is safe for the working directory.

41

